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ABSTRACT

We have investigated the probability distributions of sunspot area and magnetic flux by using the

data from Royal Greenwich Observatory and USAF/NOAA. We have constructed a sample of 2995
regions with maximum-development areas ≥ 500 MSH (millionths of solar hemisphere), covering

146.7 years (1874–2020). The data were fitted by a power-law distribution and four two-parameter
distributions (tapered power-law, gamma, lognormal, and Weibull distributions). The power-law

model was unfavorable compared to the four models in terms of AIC, and was not acceptable by
the classical Kolmogorov-Smirnov test. The lognormal and Weibull distributions were excluded

because their behavior extended to smaller regions (S ≪ 500 MSH) do not connect to the previously
published results. Therefore, our choices were tapered power-law and gamma distributions. The

power-law portion of the tapered power-law and gamma distributions was found to have a power
exponent of 1.35–1.9. Due to the exponential fall-off of these distributions, the expected frequencies

of large sunspots are low. The largest sunspot group observed had an area of 6132 MSH, and the
frequency of sunspots larger than 104 MSH was estimated to be every 3 – 8 ×104 years. We also have

estimated the distributions of the Sun-as-a-star total sunspot areas. The largest total area covered by
sunspots in the record was 1.67 % of the visible disk, and can be up to 2.7 % by artificially increasing

the lifetimes of large sunspots in an area evolution model. These values are still smaller than those

found on active Sun-like stars.
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2 Sakurai & Toriumi

1. INTRODUCTION

Sunspots represent a variety of magnetic activities of the Sun (Solanki 2003; van Driel-Gesztelyi & Green
2015). It is thought that the dynamo mechanism in the solar interior intensifies and transports mag-

netic flux to the surface and eventually builds up active regions (ARs) including sunspots (Parker
1955). Even after four centuries of continuous observations, the sunspots still maintain important

positions in the investigation of the dynamo processes in the Sun.
Another importance of sunspots is their close relationship with flare activity (Priest & Forbes 2002;

Shibata & Magara 2011; Toriumi & Wang 2019). Statistical investigations have revealed that greater

flares emanate from larger ARs (Sammis et al. 2000). This may be natural since larger ARs harbor
more magnetic flux and thus more magnetic free energy available. The largest observed sunspot

group since the late nineteenth century was the one in 1947 April, the largest area of which was 6132
MSH (millionths of solar hemisphere; 1 MSH = 3.04 × 106 km2) or about 1.2 % of the visible solar

disk (Figure 1). While this region was not flare-active, another giant sunspot in 1946 July caused
larger flares with geomagnetic disturbances (Toriumi et al. 2017). The formation mechanism of such

great ARs is an interesting issue to be resolved.
The existence of spots is also known for other stars (Berdyugina 2005; Strassmeier 2009). One of

the largest starspots reported thus far was from a K0 giant XX Tri (HD 12545), which covered about
20% of the entire stellar surface (Strassmeier 1999). It was found that even solar-type stars producing

the so-called superflares (Schaefer et al. 2000; Maehara et al. 2012) host starspots much larger than
the solar ones (up to ∼ 10% of the stellar hemisphere; Notsu et al. 2013, 2015). Therefore, the

discussion of superflares on the Sun is closely related to the question of the production of super-large
sunspots.

The key quantity we study in this paper is the probability distribution function of the area S or

magnetic flux Φ of sunspots. Bogdan et al. (1988) analyzed the Mt. Wilson white-light observations
(1917–1982) of sunspots and showed that the sunspot umbral areas [1.5–141 MSH; the corresponding

total sunspot areas would be about five times of these (Solanki 2003)] follow the lognormal distribu-
tion. Hathaway & Choudhary (2008) obtained the same conclusion using the data from the Royal

Greenwich Observatory (RGO) and the United States Air Force [USAF; data were compiled and
distributed by the National Oceanic and Atmospheric Administration (NOAA)] covering the period

1874–2007 (sunspot areas larger than 35 MSH). Baumann & Solanki (2005) studied the RGO data
(1874–1976) of sunspots with areas ≥ 60 MSH, by making a distinction between a snapshot distri-

bution and a maximum area distribution; the former is derived from daily data (e.g. Bogdan et al.
1988; Hathaway & Choudhary 2008) while the latter is derived by following the time evolution of

individual regions and by recording their maximum areas. They found that the two distributions
are fitted by lognormal distributions that have similar parameter values. This property was also

mentioned in Hathaway & Choudhary (2008).
The fall-off of the lognormal distribution toward small sunspot areas may be because smaller mag-

netic concentrations tend to lose their darkness and eventually end up with small flux tubes brighter

than the surroundings (Zwaan 1987). On the other hand, the fall-off of the lognormal distribution
toward large sunspot areas was not paid much attention. In this context, Gopalswamy (2018, Figure

6) applied the Weibull distribution (Weibull 1939), which is often used to describe the failure rates of
industrial products, to the RGO and USAF/NOAA sunspot area data (maximum-area distribution).
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The tail of the observed distribution was fitted equally well by a power law and Weibull, and the

latter gives more rapid decline and less frequent appearance of extremely large regions.
Since sunspots are made (i.e. obtain their darkness) because of their magnetic fields by inhibition of

convective heat transport (e.g. Spruit 1977), the probability distribution of magnetic flux in magnetic
structures (including sunspots) is an equally important quantity. Harvey & Zwaan (1993) analyzed

the magnetograms obtained at the US National Solar Observatory at Kitt Peak (NSO/Kitt Peak) in
the period 1975–1986 and derived the distribution of magnetic flux at the maximum development of

individual active regions. For regions with areas larger than 121 MSH the magnetic flux emergence
rate was approximated by a power law. Schrijver & Harvey (1994) gave a more specific fitting

equation with a power-law exponent of about 2.0 [probability ∝ Φ−α with α ≃ 2; in this article
α(> 0) is called the power-law exponent]. Hagenaar et al. (2003) investigated the emergence rates

of ephemeral regions (small-scale bipolar magnetic field patches) using the data from the Michelson
Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO/MDI; Scherrer et al. 1995)

taken between 1996 and 2001. They found that the distribution looked like an exponential function.

Thornton & Parnell (2011) analyzed the emergence rates of small-scale magnetic field patches using
the data from the Solar Optical Telescope onboard the Hinode satellite (Hinode/SOT; Tsuneta et al.

2008) and obtained a power-law formula extending all the way up to the active-region scales, with a
power-law exponent of 2.69. All of these results are summarized and discussed later in Section 5 and

in Figure 7. Balmaceda et al. (2009), Muñoz-Jaramillo et al. (2015), and Mandal et al. (2020) give
detailed accounts on the issues on sunspot area calibration. Muñoz-Jaramillo et al. (2015) also tried

several models (power law, lognormal, Weibul, exponential, and their combinations) to fit the area
distributions.

In this paper, we will use the data from RGO (1874–1976) and USAF/NOAA (1977 - 2020) and
derive the maximum areas of individual regions (Section 2). Recurrent regions are counted only once

when their areas reach the maximum. In order to compare these with magnetic field observations
of active regions and smaller magnetic patches, we will convert the sunspot areas to magnetic flux

values (Section 2.2). Our primary interest here is whether the sunspot area or magnetic flux distri-
bution extends to large values in the form of a power law or is tapered off, to address whether the

Sun may have super-large sunspots like in super-flare stars. Therefore, we limit the data of sunspots

with areas 500 MSH or larger, and try to fit the data with five kinds of distribution functions; power
law, tapered power law, gamma, lognormal, and Weibull distributions (Section 3). Statistical exam-

inations (Section 4) and comparison with previously published results (Section 5) show preference
on the tapered power law and gamma distributions. Using the obtained results, we can predict the

expected frequencies of super-large sunspots. In Section 6, we will adopt a simple time-evolution
model of sunspot areas and examine the effects of assumptions we made in our analysis. Particularly

we can estimate the snapshot (instantaneous) distribution of sunspot areas (Section 6.3) and also a
distribution of Sun-as-a-star total sunspot areas (Section 6.4), and will discuss their implications on

super-large stellar spots (Section 7).

2. DATA

2.1. Data Sources
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Figure 1. Ca K-line spectroheliogram of 1947 April 7 taken at Mitaka, Tokyo; celestial north is up, west to
the right. The big active region near the disk center is RGO region 14886 which showed a foreshortening-
corrected area of 6132 MSH, the largest on the record, on April 8.

The Greenwich Photoheliographic Results (GPR) in PDF are available through the SAO/NASA

Astrophysics Data System (ADS), NOAA1, and the UK Solar System Data Center2. The digitized
data of sunspot areas recorded in GPR (1874 April – 1976) are provided at several sites3,4,5. System-

atic observation and data collection of sunspots at RGO started on 1874 April 17 (Christie 1907). The
correction for foreshortening was explained to have been applied to regions of angular distance within

80◦ from the disk center (Spencer Jones 1955), but regions beyond were occasionally recorded. From
these data sets we have picked up regions whose foreshortening-corrected maximum-development

areas (Smd) are 500 MSH or larger. If the corrected area S of a region was monotonically increasing
or decreasing on the visible hemisphere, we defined the maximum value of S as the maximum-

development area Smd, although the true maximum took place on the back-side of the Sun. The
effects of this assumption will be estimated in Section 6. For recurrent regions, we only retained the

maximum S over all their disk passages because they were regarded as generated from the identical
magnetic flux tubes generated by the dynamo. For this we had to identify recurrent regions, and

such lists are available in Maunder (1909) (1874–1906), and “Catalogue of Recurrent Groups of Sun
Spots” (1910–1955), “Ledger I: Recurrent Groups” (1916–1955), and “General Catalog of Groups of

Sunspots” (1956–1976) sections of GPR.

The data after the cessation of RGO solar observations in 1976 were taken from USAF/NOAA
(1977–2020)5. As no convenient lists are available to identify recurrent regions, we did this manually

by relying on the following data: Hα synoptic charts in Solar Geophysical Data (SGD)6 (1977–1989),

1 ftp://ftp.ngdc.noaa.gov/STP/SOLAR DATA/SOLAR OBSERVATION/GREENWICH/
2 http://www.ukssdc.ac.uk/wdcc1/RGOPHR/
3 ftp://ftp.ngdc.noaa.gov/STP/SOLAR DATA/SUNSPOT REGIONS/Greenwich/
4 http://fenyi.solarobs.csfk.mta.hu/GPR/
5 http://solarcyclescience.com/activeregions.html
6 ftp://ftp.ngdc.noaa.gov/STP/SOLAR DATA/SGD PDFversion/
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NOAA Report of Solar and Geophysical Activity (RSGA)7 (1990–2000), NOAA Weekly Prelimi-

nary Report and Forecast of SGD (Weekly PRF)7 (2001–2009), and Debrecen Photoheliographic
Data (DPD)8 (2010–2020). We have picked up regions with the foreshortening-corrected maximum-

development area exceeding 500/1.20 = 415 MSH (see below). The distribution of angular distances
from the disk center did not show a clear decline toward the limb and continued up to 90◦, implying

that the foreshortening correction was applied to all the USAF/NOAA data.
In the end we have selected 2995 regions, 2175 from RGO and 820 from USAF/NOAA data, covering

1874 April to 2020 December, 146.7 years (Table 1). Before obtaining the final list, we have removed
363 and 101 regions from RGO and USAF/NOAA data as they were members of recurrent regions.

The data fully cover 13 solar cycles, from Cycle 12 (1878 December – 1890 March) to Cycle 24 (2008
December – 2019 December).

Table 1. Data

No. Date Data source Region number RGO area Original areaa Magnetic flux

[MSH] [MSH] [Mx]

1 1947-04-08 RGO 14886 6132.0 6132 3.18E+23

2 1946-02-07 RGO 14417 5202.0 5202 2.69E+23

3 1951-05-19 RGO 16763 4865.0 4865 2.51E+23

4 1946-07-29 RGO 14585 4720.0 4720 2.44E+23

5 1989-03-18 NOAA 5395 4320.0 3600 2.23E+23

6 1982-06-15 NOAA 3776 3720.0 3100 1.92E+23

7 1926-01-19 RGO 9861 3716.0 3716 1.92E+23

8 1989-09-04 NOAA 5669 3696.0 3080 1.91E+23

9 1990-11-19 NOAA 6368 3696.0 3080 1.91E+23

10 1938-01-21 RGO 12673 3627.0 3627 1.87e+23

a: NOAA area before converted to the RGO scale.

Note—Table 1 is published in its entirety in the machine-readable format. Only the top ten regions are
shown here to explain the format of the table.

2.2. Sunspot Area vs. Magnetic Flux

In order to relate the sunspot area and the total radial unsigned magnetic flux (including the flux
outside of the sunspots), we used the SHARP data series (Bobra et al. 2014) of the Helioseismic

and Magnetic Imager (HMI; Scherrer et al. 2012; Schou et al. 2012) aboard the Solar Dynamics
Observatory (SDO; Pesnell et al. 2012). We picked up all available CEA (cylindrical equal area)-

remapped definitive SHARP data from 2010 to 2015 that contained the sunspots of NOAA areas
≥ 500 MSH within 45◦ from the disk center. In total, 137 patches were collected (one patch per

7 ftp://ftp.swpc.noaa.gov/pub/warehouse/
8 http://fenyi.solarobs.csfk.mta.hu/DPD/
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region per day). From each patch, we carefully eliminated magnetic concentrations that were not

related to the target ARs.
In order to evaluate the total unsigned magnetic flux in maxwell (Mx) from the list of the sunspot

areas, we investigated the relation between the sunspot area, SHMI, and the total unsigned radial flux,
ΦHMI, which can also be calculated from the SHARP data. Note that we measured the total flux only

within the smooth bounding curve of the SHARP data to minimize the possibility of including flux
that was not related to the target AR and to reduce the noise effect. Figure 2(a) shows a scatter plot

between SHMI and ΦHMI. From the least-squares fitting to this double logarithmic plot, we obtained
the relation between the two parameters,

log (ΦHMI [Mx])=(1.010± 0.132)× log (SHMI [MSH])

+(19.676± 0.400), (1)

(log means log10; for natural logarithm we use “ln” in this paper) where we assumed that both ΦHMI

and SHMI have errors (Deming 1943; Press et al. 1992). The obtained conversion equation shows that
the total flux is almost linearly related to the sunspot area, Φ/S ≃ 1660 gauss (AR flux/sunspot

area for S ≃ 500 MSH). For comparison, Schrijver & Harvey (1994) derived AR flux/AR area ≃ 150
gauss.

(a) (b)

Figure 2. (a) Scatter plot between sunspot areas and total unsigned magnetic fluxes in ARs, both taken
from the SHARP data, with the linear fitting to the log-log plot: see Equation (1). (b) Comparison of
sunspot areas reported by NOAA vs. the database of Mandal et al. (2020) that reproduces the RGO area
scale. The number of samples is 762. The solid line shows the regression line [Equation (2)]

2.3. Sunspot Area Calibration

It is known that the USAF/NOAA sunspot areas, SNOAA, are systematically smaller than the
RGO ones, SRGO. In general, the multiplication of the USAF/NOAA values by 1.4–1.5 gives better

agreement with the RGO values (e.g., Fligge & Solanki 1997; Hathaway et al. 2002; Balmaceda et al.
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2009; Hathaway 2015). However, Foukal (2014) showed that the inconsistency between the RGO and

USAF/NOAA data sets was mainly due to very small sunspots (. 2 MSH) and that the areas for
> 300 MSH equalized. In order to examine if the NOAA records of larger ARs show systematically

smaller values, we used the database developed by Mandal et al. (2020) which was calibrated to give
the same area scale as RGO and was extended to 20219. Among our 820 NOAA regions we excluded

58 regions which we suspect that NOAA and Mandal et al. (2020) used different group definitions.
Figure 2(b) shows the comparison of 762 regions. We found that mean and standard deviation of

the area ratios, SRGO/SNOAA, are 1.20 ± 0.01. Therefore, we simply assumed that the RGO data
sets provide reliable values and the NOAA values are converted by

S = SHMI = SRGO = 1.20× SNOAA. (2)

Mandal et al. (2020) obtained the conversion factor of 1.48, but the method of comparison is different;
they compared daily data while our data are region-wise, maximum-development areas. We have also

made the analysis adopting a conversion factor of about 1.4 and found basically the same results,
although detailed numerical values changed.

Under the assumption of Equation (2), we then applied Equation (1) to the maximum-development
sunspot areas Smd of both RGO and USAF/NOAA to generate the database on the maximum-

development magnetic flux Φmd. A 500 MSH sunspot corresponds to a magnetic flux of 2.53× 1022

Mx. The largest sunspot so far, RGO 14886 in 1947 April (6132 MSH), is estimated to have a

total flux of 3.18 × 1023 Mx. Flux estimations of modern events such as NOAA 9169, 9393, 10486,
and 12192 showed good agreements with the independent measurements by, e.g., Tian & Alexander

(2008), Smyrli et al. (2010), Criscuoli et al. (2009), Zhang et al. (2010), and Sun et al. (2015).

3. STATISTICAL ANALYSIS

3.1. Definitions

Our data are made of Ns = 2995 values of sunspot magnetic flux at their maximum development,
Φmd,i (i = 1, 2, . . . , Ns) (subscript “s” is meant for “sources” or “source flux tubes”). In the following

we simply designate Φmd as Φ unless we have to distinguish between maximum-development values
and other cases. The minimum value of Φi’s is Φ1 = 2.53× 1022 Mx, corresponding to an area of 500

MSH. As a histogram representation of data depends on how one defines the data bins (Clauset et al.
2009), we will work on the complementary cumulative distribution function [CCDF, represented by

F (Φ)] shown in Figure 3a, which is uniquely defined in terms of a given observational data set [Equa-
tion (A4)]. CCDF is a decreasing function of its argument while the cumulative distribution function

(CDF) is an increasing function; therefore, the usage of CCDF is intuitively more straightforward in
comparing with the probability distribution function that is also a decreasing function of its argument

in the present case.

The slope (or derivative) of CCDF is the usual probability distribution function [PDF, represented
by P (Φ)], but here we introduce dimensional parameters and define the flux emergence rate f(Φ) in

units of regions Mx−1Mm−2d−1 as (Figure 3b)

f(Φ) = P (Φ)
Ns

AT
, P (Φ) = −dF (Φ)

dΦ
, (3)

9 http://www2.mps.mpg.de/projects/sun-climate/data/indivi group area 1874 2021 Mandal.txt
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Figure 3. (a) The complimentary cumulative distribution function (CCDF) F (Φ) of magnetic flux Φmd

[Mx] of large sunspot regions (Smd ≥ 500 MSH) at their maximum development, observed from 1874 April
to the end of 2020 (146.7 years). The top horizontal axis shows the corresponding sunspot areas. The dotted
curve represents the distribution when recurrent regions not at their maximum development are all counted.
(b) A histogram representing the distribution function f(Φmd) of emergence rates of magnetic flux Φmd of
large sunspot regions, per bin width, unit area in Mm2, and day. The bin width is ∆ log Φmd = 0.125.
Vertical bars indicate the

√
N uncertainty of N regions contained in each bin (the last bin only contains two

regions). The dotted histogram represents the distribution when recurrent regions not at their maximum
development are all counted.

where A stands for the area of observation (the full Sun, e.g. 6.2× 106 Mm2 in Sections 4 and 5 and

the hemisphere in Sections 6.3) and T =146.7 years = 5.36 × 104 days. A histogram is generated

showing f(Φj) = Nj/(AT∆Φj), where j stands for the bin number, and Nj is the number of sunspot
groups with flux values ranging from Φj to Φj +∆Φj . The flux bins are taken equi-distant in logΦ

(∆ logΦ = constant = 0.125), so that ∆Φj = Φj ln(10)∆(logΦj). The quantity Ns = ΣjNj is
explicitly used when we compare the observed histogram with a theoretical distribution function P .

In Figures 3a and 3b, the solid curves are from the maximum development areas while the dotted
curves show the cases when we did not exclude the recurrent regions other than their maximum area

development. We can expect that a larger region may appear multiple times at smaller areas and
increase the counts at lower bins. The effect of not excluding recurrent regions is to slightly steepen

the slope of the distribution.

3.2. Models and Fitting Procedures

In this paper we will try to fit the observed data set Φi by

(1) a power-law distribution (parameter: α1),

(2) a tapered power-law distribution (parameters: α2, β2),

(3) a truncated gamma distribution (parameters: α3, β3),
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Figure 4. (a) An MLE power-law fit (straight line) to the complimentary cumulative distribution function
of magnetic flux F (Φ). (b) The power-law fit of panel (a) for F (Φ) is converted to the probability distribution
function f(Φ) and is overplotted on the histogram of the data.

(4) a truncated lognormal distribution (parameters: µ, σ), and

(5) a truncated Weibull distribution (parameters: k, β5).

A tapered power-law distribution (also called the Pareto distribution of the third kind (Johnson et al.

1994) in contrast to the original Pareto distribution which is a pure power law) has a CCDF that
is a product of a power law and an exponential function. A gamma distribution has a PDF that

is a product of a power law and an exponential function, and its CCDF is represented in terms
of the gamma function. These have been used to describe the distribution functions of earthquake

magnitudes (e.g. Kagan 2002; Serra & Corral 2017), in comparison with the power-law distribution
which is named the Gutenberg-Richter relation in seismology (e.g. Utsu 1999).

The power-law distribution is a one-parameter model while the other four are two-parameter models.
Models (1), (2), and (3) have a power-law component with the exponent α1, α2, and α3, respectively.

Models (2), (3), and (5) have an exponential component whose decay coefficients are represented by
β2, β3, and β5. The best-fit parameter values can be given systematically by the maximum-likelihood

estimator (MLE), by maximizing the log-likelihood (LLH),

LLH =
∑

ln(P (Φi)). (4)

The definitions of these five distributions and their MLE solutions are given in Appendix A.
Whether one model is more superior to the others can be assessed by comparing the AIC values

(Akaike 1974),
AIC = −2 ×max(LLH) + 2K, (5)

where K is the number of parameters (K = 1 or 2 in our analysis). (In another often-used cri-

teria, Bayesian information criteria or BIC, K lnn (n is the sample size) is used instead of 2K;



10 Sakurai & Toriumi

Table 2. Derived parameters and 1-σ error ranges

Model Method Parameter values and errors ∆AICa
√
Ns KSb KS KSr

prob.c P-valued

Power law

MLE α1 = 2.914 ± 0.035 184.6 4.14 < 10−6 0.019

Tapered power law

MLE α2 = 1.808 ± 0.091 β2 = 0.669 ± 0.056 2.79 1.059 0.210 0.290

KSr=min α2 = 1.886 ± 0.153 β2 = 0.614 ± 0.083 3.77 1.211 0.105 0.444

Gamma

MLE α3 = 1.358 ± 0.138 β3 = 0.591 ± 0.057 1.51 0.989 0.279 0.458

KSr=min α3 = 1.450 ± 0.224 β3 = 0.547 ± 0.083 2.11 1.08 0.195 0.665

Lognormal

MLE µ = −0.300 ± 0.099 σ = 0.777 ± 0.035 1.55 0.630 0.817 0.414

KSr=min µ = −0.157 ± 0.188 σ = 0.728 ± 0.061 4.27 1.075 0.196 0.490

Weibull

MLE k = 0.625 ± 0.044 β5 = 2.278 ± 0.217 0.00 0.827 0.497 0.911

KSr=min k = 0.629 ± 0.068 β5 = 2.270 ± 0.396 0.06 0.868 0.434 0.850

a: Relative AIC values with respect to the minimum value of all the AIC values.
b: Kolmogorov-Smirnov statistic KS derived from the observed data and the assumed model, multiplied by√
Ns.

c: Theoretical probability that the KS metric shows values larger than the observed KS metric.
d: Probability based on the simulation runs that the simulated KSr values are larger than the observed KSr
value.

Burnham & Anderson (2002).) By increasing the number of parameters, the fitting becomes better
and LLH increases. However, the introduction of more parameters is not justified if AIC does not

decrease. If the AIC value of one model is smaller than the AIC of the other by 9–11 or more, the

former model is regarded better than the latter (Burnham et al. 2011).
AIC is a relative measure, and it is possible that the model preferred by AIC still gives a poor

fit. Whether the fitting by one model is not satisfactory and should be rejected can be estimated
by evaluating a statistical measure that quantifies the difference between the observed and modeled

CCDFs and by comparing that measure with a theoretical threshold (Stephens 1970, 2016). Here
we use the Kolmogorov-Smirnov statistic KS defined by Equation (B36). For a large-enough Ns, the

probability for the observed
√
Ns KS value or larger to be obtained is theoretically given as a function

(Kolmogorov-Smirnov function) which has relatively weak dependence on Ns. Alternatively we can

utilize simulation runs to estimate the probability (see below).
Once the parameter values are obtained, we can estimate their error ranges using the parametric

bootstrap method (Efron & Tibshirani 1993; Burnham & Anderson 2002) as follows.

(1) Generate Ns sets of uniform random variables yi, i = 1, 2, . . . , Ns (0 ≤ yi ≤ 1).
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(2) Find Φi such that F (Φi) = yi.

(3) For the data set Φi (i = 1, 2, . . . , Ns), obtain the MLE solutions for the parameters and the KS

statistic.

(4) Repeat (1)–(3) m times; then the distributions of the parameter values and the KS statistic

are obtained.

(5) Evaluate the 1-σ width of these distributions and adopt them as the error ranges of the pa-

rameters.

(6) For the KS statistic, if the number of cases where the KS values exceed the observed value

KSobs is m
′, then m′/m gives the probability (P-value) that such a value of KSobs is obtained

under the assumed model.

The 1-σ values defined in step (5) scale basically as 1/
√
Ns and do not depend on m if it is taken

sufficiently large (we used m = 105).

The procedure described above has some points to consider. First, the MLE solution is not intended
to geometrically fit a model CCDF to the observed CCDF. Particularly, it does not care much about

the fitting at the tail, because the MLE solution is mostly determined by data points of highest
density, i.e. near to the lower end of the distribution. A more geometrically-favorable solution may

be obtained by, say, minimizing directly the KS statistic. Second, the KS statistic is not sensitive to
misfitting at the lower and upper ends of the distribution, because by definition both the observed and

model CCDF match (taking the values of 0 or 1) at the ends. It is known that the contributions to

KS roughly scales as 1/
√

F (1− F ) (Anderson & Darling 1952), and Clauset et al. (2009) suggested
to use a modified form of the KS statistic by dividing its components by 1/

√

F (1− F ) to enhance

the sensitivity of the test at both ends. Here we introduce a KSr (revised KS) statistic defined by
Equation (B37), by dividing only by 1/

√
F to enhance the sensitivity at the tail.

In summary, we will apply two methods.

• Method 1: Seek the MLE solution, check the AIC values, and test the KS statistic by the

Kolmogorov-Smirnov function. Then by simulation runs, estimate the error ranges of the
obtained parameters, and the P-value of the observed KSr statistic.

• Method 2: Minimize KSr to obtain the solution, check the AIC values, and test the KS statistic
by the Kolmogorov-Smirnov function. Then by simulation runs, estimate the error ranges of

the obtained parameters, and the P-value of the observed KSr statistic.

Method 2 was not applied to the power-law model because the deviations of the model at the tail

are large and the introduction of KSr may not make sense.

4. FITTING RESULTS

4.1. Power Law

Figure 4 shows the results of power-law fitting. The MLE solution for the exponent is α1 = 2.91,
and the KS statistic is large,

√
Ns KS = 4.1. Therefore, the probability of obtaining such a value or

larger is infinitesimally small, and the model is safely rejected.
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Figure 5. MLE fits to the complimentary cumulative distribution functions F (Φ) using models of (a)
tapered power law, (b) gamma, (c) lognormal, and (d) Weibull distributions.

4.2. Two-Parameter Models

Figures 5 (a)–(d) show the results of fitting by adopting MLE solutions (Method 1). Method 2
also gives similar plots. In Figure 6, both the CCDF and emergence rates f(Φmd) together with the

fitted functions are given by applying Method 2 to the gamma distribution model, which is our most

favorable model.
Table 2 summarizes, for MLE and KSr=min (except for power law) methods respectively, the

obtained parameter values (with error ranges), relative AIC values, KS statistics and its theoretical
probability, and P-values based on the KSr statistic. Here ∆AIC (∆BIC = ∆AIC among the two-

parameter models) means the values of AIC with respect to its smallest value in the models (which
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Figure 6. (a) A fit to the complimentary cumulative distribution function (CCDF) F (Φmd) using the
gamma distribution model and by minimizing the KSr metric. (b) The gamma-distribution fit of panel (a)
for F (Φmd) is converted to the probability distribution function f(Φmd) and overplotted on the histogram
of the data.

happened to take place for the MLE model applied to the Weibull distribution). Strictly speaking,

AIC is defined when LLH is maximized [the MLE solution, Equation (5)], but we also applied the same
formula by replacing max(LLH) with LLH from a particular solution not maximizing LLH. Therefore,

for each model, ∆AIC is smaller for the MLE solution than for the solution with KSr=min. Likewise,
the P-value based on KSr is larger (better fitting) for the solution with KSr=min compared to the

MLE solution.
The following properties can be found on this table.

1. The AIC values of the two-parameter models are much smaller than the case of the power law,

so that all these four models are better than the power law. The four models show ∆AIC values
less than 5 and cannot be discriminated.

2. From the KS probabilities, the MLE solutions show better performance but the KSr=min

solutions are also acceptable.

3. From the P-values of the KSr metric, the solutions minimizing KSr show better performance
but the MLE solutions are also acceptable.

4. The power-law indices of the tapered power law and the gamma distributions are α2 = 1.8–1.9

and α3 = 1.35–1.45. The reason why α2 > α3 is given in Appendix A.4; the tapered power-
law distribution actually contains a mixture of two exponents α2 and α2 − 1, and its overall

behavior is somewhere between them. If we extend the PDF toward smaller Φmd values, the
tapered power-law distribution asymptotically approaches the power law with exponent α2. In

any case it is important to point out that both distributions show the power-law-like behavior
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with exponent less than 2, namely the overall contributions to the magnetic flux supply come

mostly from large Φmd regions.

5. As we discuss later (Figure 7), the behavior of lognormal and Weibull distributions extended
to smaller values of Φmd is different from the tapered power-law and gamma distributions

(the latter two behave essentially like a power law with exponent ≃ 1.35–1.9). The Weibull
distributions approach toward a very flat power-law distribution ∝ Φ−0.4

md , and the lognormal

distributions decrease toward small Φmd. Therefore, our preferred models are the tapered
power-law and gamma distributions.

6. The tapered power-law and gamma distributions show a steep fall-off for large Φmd values,

steeper than power laws, indicating that the probability of having extremely large active regions
is vanishingly small and there is a practical upper limit in the size and magnetic flux of emerging

active regions.

Figure 7. (a) Comparison of magnetic flux emergence rates f(Φmd). The histogram drawn with a thick
black line is our data. Four kinds of fits by minimizing the KSr metric are shown, respectively, for tapered
power-law (red), gamma (olive), Weibull (teal green), and lognormal (lime green) distributions. The black
dashed line of power-law exponent 2.69 is from Thornton & Parnell (2011). The histogram shown in purple
is from Harvey & Zwaan (1993), and the two parallel lines in purple are the power laws of exponent=2
(Schrijver & Harvey 1994) representing their amplitude ranges in solar activity minima/maxima. The dashed
curve in lime green is the lognormal fit from Baumann & Solanki (2005). The dashed curve in teal green is
the Weibull function fit from Gopalswamy (2018). (b) Same as panel (a) but the plotting range is extended
to smaller flux values. Newly added graphs are the SOHO/MDI data from Hagenaar et al. (2003, maroon)
and the Hinode/SOT data from Thornton & Parnell (2011, navy blue).
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5. COMPARISON WITH PUBLISHED RESULTS

In this section, we will compare our results on the two-parameter models with the published ob-
servational data and fitting results. In Figure 7a which shows the flux emergence rates f(Φmd), the

histogram in a thick black line is our data (500 MSH ≤ Smd ≤ 6132 MSH, 2.53× 1022 Mx ≤ Φmd ≤
3.18 × 1023 Mx). Four solid curves show our fits by minimizing the KSr metric; tapered power-law

(red), gamma (olive), Weibull (teal green), and lognormal (lime green) distributions. They are ex-
tended down to Φmd = 1020 Mx (Smd ≃ 2 MSH) and up to Φmd = 1024 Mx (Smd ≃ 19000 MSH).

Toward the smaller ends of Φmd, the tapered power-law, gamma, and Weibull distributions approach

power laws with exponents 1.89, 1.45, and 0.37, respectively
The histogram in a thick purple line is taken from Harvey & Zwaan (1993), who derived the emer-

gence rates of bipolar active regions using the data obtained at NSO Kitt Peak (Livingston et al.
1976). Schrijver & Harvey (1994) reported that this distribution is fitted by a power law with expo-

nent 2, and the amplitudes vary by roughly a factor of 10 between activity minimum and maximum,
as shown by two parallel lines in purple.

The thick dashed curve in lime green reproduces the lognormal fit to the RGO data (Smd ≥ 60
MSH) by Baumann & Solanki (2005), extended down to Smd ≃ 2 MSH (thin dashed curve). Below

the peak at Smd ≃ 62.2, the curve goes down to f → 0. Our lognormal fit peaks at Smd ≃ 250 MSH
and then decreases to f → 0. At least for our lognormal fitting, this decrease is not due to small

fluxtubes losing their darkness, because even the smallest regions (500 MSH) in our sample are fairly
large regions. Rather, this is a result of the shape of the observed distribution that bends down

toward large Φmd, and the derived µ value may not represent any physical significance. Bogdan et al.
(1988) gave the values 0.34–0.62 MSH for the peak of the instantaneous distribution function of

sunspot umbral areas modeled by lognormal distribution.

The thick dashed curve in teal green reproduces the Weibull fit to the RGO and USAF/NOAA
data by Gopalswamy (2018), which covered all the data Smd ≥ 1 MSH. The curve is very close to

our Weibull fit.
In Figure 7b, we extended the plot range to 1015 Mx ≤ Φmd ≤ 1025 Mx (2.3 × 10−5 MSH .

Smd . 1.9 × 105 MSH), and added two more data sets. The thick solid curve in brown is from
Hagenaar et al. (2003), who investigated the emergence rates of small-scale bipolar magnetic patches

(ephemeral regions) using the data from SOHO/MDI. The thick curves in navy blue (solid, dashed,
dotted) are from Thornton & Parnell (2011, Figure 5), who analyzed the emergence rates of small-

scale magnetic patches using the data from Hinode/SOT. The thin dashed line in teal green is the
downward extension of Gopalswamy (2018)’s Weibull distribution.

The thick dashed lines in black in Figures 7a and 7b show the power law of exponent 2.69 suggested
by Thornton & Parnell (2011) to cover all the way from small-scale flux concentrations to large

active regions. Our picture is different from theirs; the flux emergence rates of active regions are
characterized by a power-law-like behavior of exponents between 1.45 (olive) and 1.89 (red) in Figure

7. Our results are roughly consistent with the observations by Harvey & Zwaan (1993), who also

showed that the distribution amplitudes varied by a factor of 10 between activity minima and maxima.
Ephemeral regions and much smaller flux concentrations may have a power-law distribution with

exponent 2.69, but they show little changes (or even anti-phase changes; Hagenaar et al. 2003) with
the solar cycle, and they may give way to the active region component somewhere at around Φmd ≃
1020 Mx. The exponent larger than 2 in small-scale flux concentrations means dominant contributions
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of flux emergence in the smallest end of the distribution function. Those small-scale flux emergence

may be sustained by a local dynamo (Cattaneo 1999; Buehler et al. 2013). The total (unsigned)
magnetic flux on the Sun in scales exceeding a few arcseconds (& 1000 km) varies in phase with

the solar cycle (Arge et al. 2002), and the flux at activity maximum is about four times the flux
at minimum. Therefore, flux emergence in small scales would not accumulate to systematically

overwhelm the magnetic flux from active regions.

Table 3. Sunspot area, magnetic flux, and interval of appearance

S [MSH] Φ [Mx] Interval [year]

500 2.5× 1022 5.242 ± 0.001 × 10−2

1000 5.1× 1022 1.82 ± 0.04× 10−1

2000 1.0× 1023 1.20 ± 0.04× 100

3000 1.5× 1023 6.0+0.9
−0.8 × 100

6132 3.2× 1023 5.2+3.7
−2.2 × 102

10000 5.2× 1023 8.2+17
−5.5 × 104

S [MSH] Φ [Mx] Interval [year]

6.2+0.5
−0.4 × 103 (3.2+0.2

−0.2)× 1023 1.0× 103

7.9+0.7
−0.5 × 103 (4.1+0.4

−0.3)× 1023 1.0× 104

9.7+1.0
−0.7 × 103 (5.0+0.5

−0.4)× 1023 1.0× 105

1.15+0.12
−0.09 × 104 (6.0+0.6

−0.5)× 1023 1.0× 106

1.51+0.18
−0.14 × 104 (7.9+1.0

−0.7)× 1023 1.0× 108

1.83+0.23
−0.17 × 104 (9.6+1.2

−0.9)× 1023 4.6× 109

The ranges of values are based on the 1-σ error ranges given in Table 2, namely α3 =
1.450 ± 0.224, β3 = 0.547 ± 0.083.

5.1. Emergence Frequency of Large Sunspots

Based on the fitting results, we are able to predict the expected frequencies of large sunspots. Table
3 shows, by using the model of gamma distribution with parameter values determined from KSr=min

(α3 = 1.450 ± 0.224, β3 = 0.547 ± 0.083), the expected appearance intervals as a function of sunspot
area (left half of the table), and the expected sunspot areas for the specified values of appearance

intervals (right half of the table). The ranges of values given are based on the 1-σ error ranges given
in Table 2. It turned out that the errors in α3 and β3 are roughly inversely correlated, so that the

ranges of values shown in Table 3 correspond to (α3, β3) = (1.450 + 0.224, 0.547 − 0.083) and (1.450
− 0.224, 0.547 + 0.083).

The time interval for regions with flux larger than Φ to appear is given by [F (Φ)Ns/T ]
−1 (Ns =

2995, T = 146.7 years). The sunspots larger than 500 MSH are expected to appear at a rate of

every 19 days. The regions as large as or exceeding the largest region in our database (6132 MSH)
are expected to appear every 520 years. Beyond roughly 10000 MSH, the interval becomes longer

than 8 × 104 years, and even after the lifetime of the Solar System (4.6 × 109 years), one can only
expect a region as large as 1.8 ×104 MSH. These are due to the exponential decline of the probability

distribution function. By taking into account the 1-σ errors, the expected interval for 10000 MSH
regions is reduced to 2.7 ×104 years, and 2.1 ×104 MSH is the possible maximum size after 4.6× 109

years.

6. FORWARD MODELING

In the analysis so far, we have assumed that the maximum sunspot areas observed on the visible

hemisphere are the true maximum areas, which might take place on the back side of the Sun, though.
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Figure 8. A model for sunspot area evolution proposed by Kopecký (1956). (a) The area S(t) as a
function of time t in day is given for a set of parameters (a, b) = (0.3, 20.0), by changing K. The curves
correspond, from the lowest to the highest, to the maximum-development areas Smd of 500, 1000, 2000,
4000, and 6132 MSH. (b) The lifetime tlife as a function of maximum-development area Smd. The thick solid
line is our adopted model with (a, b) = (0.3, 20.0), while the dashed line represents the original relation of
Kopecký (1956) with (a, b) = (0.3, 4.0). The dotted lines are the formulae given by Gnevyshev (1938) and
Nagovitsyn et al. (2019), respectively. The diamond signs and asterisks denote the lifetimes of regions taken
from published data (Kopecký 1984; Spencer Jones 1955).

The errors caused by this assumption cannot be corrected, but we may be able to estimate the effects

by a forward modeling, namely, by assuming a typical time evolution of sunspot areas we can simulate
such effects. As a biproduct, we can convert our maximum-development distribution functions to

instantaneous distribution functions.

6.1. Model

Many models have been proposed to represent the time evolution of sunspot areas (e.g. Kopecký

1956; Antalova & Macura 1986; Howard 1992; Hathaway & Choudhary 2008). Here we use the model
proposed by Kopecký (1956) because of its analytical simplicity and versatility. The time evolution

of sunspot area S(t) is described by a differential equation

dS

dt
= −aS +K − bt (t ≥ 0), (6)

where a, b, and K are parameters; (a, b) control the shape of the time profile, and K controls the
maximum size of the region. The solution to this equation is given as

S =
1

a

[(

K +
b

a

)

(

1− e−at
)

− bt

]

, (7)

and S(t) takes the maximum value

Smd =
K

a
− b

a2
ln

aK + b

b
(8)
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Figure 9. Effects of time evolution of sunspot areas were estimated by using a model by Kopecký (1956).
The dashed curve is the model generated from a gamma distribution with α3 = 1.450 and β3 = 0.547 which
reproduces the data well. The solid curve shows the distribution expected from the model by taking into
account the visibility probability of regions.

at time

tmd =
1

a
ln

aK + b

b
. (9)

S(t) starts from S(0) = 0 and comes back to S(tlife) = 0 where

1− exp(−atlife)

atlife
=

b

aK + b
. (10)

The solution for tlife, if atlife ≫ 1, is

tlife ≃
K

b
+

1

a
, (11)

and if atlife ≪ 1, it is

tlife ≃
2K

aK + b
. (12)

Kopecký (1956) used the empirical relations tlife[days] ≃ 0.1Smd[MSH] (Gnevyshev 1938) and

tlife/tmd ≃ 0.094Smd[MSH] + 9.3 (Kopecký 1953) and adopted (a, b) = (0.3, 4.0) which roughly repro-

duces these empirical relations for Smd . 400 MSH. However, this setting makes the lifetimes of 500
MSH (minimum in our database) and 6132 MSH (maximum) regions as 50 days (1.8 solar rotations)

and 480 days (1.3 years, 17.6 solar rotations) respectively, which look too long. Nagovitsyn et al.
(2019) suggested tlife[days] ≃ 0.077Smd[MSH], a slightly shorter lifetime for the specified Smd com-

pared to Gnevyshev (1938), but this also gives large values of lifetimes. According to Kopecký (1984)
the longest lifetime of regions in the RGO observations was 8 solar rotations (RGO recurrent series

No. 2094, 1970 June 11 – December 23, 195 days, maximum area = 1774 MSH). The region of largest
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area (RGO region 14886, 6132 MSH) had a lifetime of 95 days (1947 February 5 – May 11, observed

for 4 rotations).
As will be discussed in Section 6.3, the gamma function model for F (Φmd) described in Section 5.1

gives the instantaneous distributions of sunspot area or magnetic flux which are consistent with the
observed distributions only if the region lifetimes are much shorter; a reasonable value we found is

(a, b) = (0.3, 20.0). The value of a is fixed to 0.3, because the rise time of region growth (≃ 1/a) does
not strongly depend on the region size. The lifetimes of the 500 and 6132 MSH regions in this model

are 16 and 107 days, respectively. Figure 8a shows the time profiles S(t) derived for (a, b) = (0.3, 20.0)
and for several values of Smd. Figure 8b compares the models with (a, b) = (0.3, 4.0) and (0.3, 20.0),

and other published results of sunspot lifetimes. The diamond signs denote the data points of three
longest-lived regions listed in Kopecký (1984). The asterisks denote the lifetimes of maximum sunspot

areas > 3000 MSH taken from Spencer Jones (1955). The regions whose emergence or decay (either
of them) were not observed on the visible disk have uncertainties in their lifetimes between 1 and 13

days. Hence we roughly assigned a 7-day error bar. The regions whose emergence and decay (both

of them) were not observed on the visible disk were assigned with a 14-day error bar. The model
with (a, b) = (0.3, 20.0) goes through the middle of the data points representing large (> 3000 MSH)

regions.

Figure 10. (a) The histogram of the probability distribution function g(Φ) of instantaneous distribution
of magnetic flux, derived from a gamma distribution with α3 = 1.450 and β3 = 0.547 combined with the
sunspot area evolution models of Figure 8. The solid and dashed histograms correspond to (a, b) = (0.3, 20.0)
and (a, b) = (0.3, 4.0), respectively. (b) The corresponding distributions derived from observations of RGO
and NOAA. The histogram in black was derived by using all the data with areas larger than 100 MSH, while
red, green, and blue ones are based on data from maximum, intermediate, and minimum phases of activity
defined in Table 4.

6.2. Effects of Time Evolution
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The effects of time evolution of sunspots were simulated as follows. By adopting a model of gamma

distribution with α3 = 1.450 and β3 = 0.547, we have generated Ns samples (Ns = 2995) of Φmd by

F (Φi) =
i− 0.5

Ns

(i = 1, 2, . . . , Ns). (13)

Then each model was placed at 27 equal-distant longitudes (27 is a rough number of solar rotation
period in days), magnetic flux was converted to sunspot area by Equation (1), and was evolved

according to Equation (7). The observed maximum values of S(t) in the longitude ranges of ±80◦

were recorded, converted to magnetic flux, and the CCDF was generated.

The solid curve in Figure 9 shows the result, compared with the true distribution designated by
the dashed curve. After fitting the model, we found α3 = 1.319 and β3 = 0.590. The flattening of

the distribution from α3 = 1.450 to α3 = 1.319 (by about 0.13) is because we underestimated Smd,
and the data points on the original model (dashed) were shifted toward left on the graph. From this

we may estimate that α3 = 1.450 derived from observations would actually be around α3 = 1.68, but
still our conclusion will hold that the power-law exponent is less than 2.

Table 4. Summary of observed quantities

Data Time Regions per Daily region counts Number of Observed maximum values

source span full Suna per hemisphere observations Total Total Region Region

Ns Nrd Nd area flux lifetime counts

[year] (Smd ≥ (S ≥ (Shs ≥ [MSH] [Mx] [d]

500 MSH) 500 MSH) 10 MSH)

All 146.71 2995 1.97× 104 4.42× 104 8382b 4.36× 1023 195c 26d

Maximum 35.26 1466 0.99× 104 1.28× 104 8382 4.36× 1023

Minimum 37.65 114 0.06× 104 0.71× 104 2268 1.16× 1023

Intermediate 73.80 1415 0.92× 104 2.43× 104 8080 3.54× 1023

a Recurrent regions were manually picked up and counted only once when they showed the largest area.
b 1947 April 8
c RGO recurrent series No. 2094, 1970 June 11 – December 23 (Kopecký 1984).
d 1937 July 12

6.3. Instantaneous Distribution

Once we have a model of time evolution of sunspot areas, we can generate the instantaneous

distribution function from the distribution of maximum-development areas. First consider a simple
case where the time evolution is represented by a step function (i.e. a spot appears with a maximum-

development area and stays so until it suddenly disappears). If the lifetimes of regions do not
depend on the areas and take a fixed value, the instantaneous distribution function is the same as

the maximum-development distribution function. If the lifetimes are proportional to the areas, the
instantaneous distribution function would be flatter than the maximum-development distribution

function because larger regions live longer and have higher probability of existence in snapshot data.
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Table 5. Simulation runs for Sun-as-a-star parameters.

Data Simulation Regions per Simulated maximum values

source parameters full Suna Total Total Region Region

Ns areab flux lifetime counts

(Smd ≥ [MSH] [Mx] [d]

10 MSH)

All (0.3, 20.0) 8.5 × 104 8270 4.30× 1023 101 15

Maximum (0.3, 20.0) 4.2 × 104 7420 3.85× 1023 93 22

Minimum (0.3, 20.0) 0.3 × 104 3680 1.90× 1023 65 5

Intermediate (0.3, 20.0) 4.0 × 104 6120 3.17× 1023 93 14

Combined (0.3, 20.0) 8.5 × 104 7420 3.85× 1023 93 22

Maximumc (0.3, 4.0) 4.2 × 104 13770 7.19× 1023 413 44

a The number of samples in the gamma function model with minimum values extended down to 4.86×1020 Mx
(10 MSH).
b The numbers do not have significance of four or more digits because of the nature of the simulation. They
are arbitrarily rounded off to the nearest ten.
c This is an artificial case of region lifetimes longer than the standard case of (a, b) = (0.3, 20.0).

In the general cases where the time evolution of sunspot areas is a function of time like in Equation
(7), one must resort to numerical simulations to estimate the instantaneous distribution function of

sunspot areas or flux emergence rates.
By adopting a model of gamma distribution with α3 = 1.450 and β3 = 0.547, we have generated

Ns samples of Φmd by Equation (13) and converted them to Smd by Equation (1). This time we
have extended the lower limit of sunspot area and flux to 100 MSH and 4.97 × 1021Mx, so that

Ns = 1.8 × 104; the number of regions with Smd ≥ 500 MSH was still 2995. Next we used Equation
(7) to evaluate and record daily values of S(t) and Φ(t), leading to data samples Nrd = 1.90 × 104

[region × day per hemisphere] for S(t) ≥ 500 MSH. In this process we introduced a filter made of 13
consecutive 1’s followed by 14 consecutive 0’s, mimicking a 27-day modulation of visibility. This filter,

replicated many times to cover the lifetimes of regions and its initial point randomly shifted between
0 and 26-th points, was multiplied to daily values of S(t) and Φ(t). Thus we derived the histogram

per unit area (Figure 10a, solid histogram) by taking A=area of the solar hemisphere=3.1×106 Mm2.
Roughly this distribution is fitted by a gamma distribution with α3 = 0.928 and β3 = 0.654. The

power-law exponent decreased (1.450 → 0.928), giving a much flatter distribution. The observed

value of Nrd obtained by counting regions with S(t) ≥ 500 MSH every day is 1.97 ×104 [region ×
day per hemisphere] and roughly agrees with the simulated results. On the other hand if we used

the evolution parameters (a, b) = (0.3, 4.0), we ended up with a much larger value Nrd = 6.10 ×104

[region × day per hemisphere], and the resulting histogram is shown as the dashed line in Figure 10a.

As a matter of fact we have selected the values (a, b) = (0.3, 20.0) so that the value of Nrd roughly
matches the observation.
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In deriving the instantaneous distribution functions of sunspot magnetic flux from observed data,

we have divided the data into three periods; activity maximum, intermediate state, and activity
minimum. (The reason why we did so is given in Section 6.4.) The dates (year and month) of activity

maxima/minima are taken from SILSO (Sunspot Index and Long-term Solar Observations)10, and we
will define the maximum/minimum periods as within 1.356 years from the maximum/minimum dates.

The mean lengths of the maximum, intermediate (between maximum and minimum periods), and
minimum states are 2.712, 5.424, and 2.712 years, respectively. The mean length of 13 cycles studied

here is 10.85 years, and 10.85/8 = 1.356 years. The regions of Ns = 2995 with Smd ≥ 500 MSH were
divided into maximum (1466), minimum (114), and intermediate (1415) states, respectively (Table

4).
Figure 10b shows the observed instantaneous distribution functions of sunspot magnetic flux when

all the data were used (black histogram) as well as the three activity phases were treated separately
(red, green, and blue histograms). We have used all the data with S ≥ 100 MSH. The histograms

are all similar, meaning that they only change the magnitude and not the form of distribution.

Particularly the histogram using all the data is reproduced well by the simulated results with (a, b) =
(0.3, 20.0) (Figure 10a, solid histogram).

Figure 11. (a) The histograms of the probability distribution function h(Φhs) of magnetic flux summed
over the hemisphere, derived from a gamma distribution with α3 = 1.450 and β3 = 0.547 combined with the
sunspot area evolution model of Figure 8. The dotted histogram in black was derived by simply using all
the generated data. The histograms in red, green, and blue were derived by mimicking activity maximum,
intermediate, and minimum states as defined in Table 4. The solid histogram in black was made by combining
these three histograms. (b) The corresponding distributions derived from observations of RGO and NOAA.
The histogram in black was derived by using all the data with areas larger than 10 MSH, while red, green,
and blue ones are based on data from activity maximum, intermediate, and minimum phases of activity
defined in Table 4.

10 https://wwwbis.sidc.be/silso/cyclesminmax
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6.4. Sun-as-a-Star Distributions

From the instantaneous distribution of magnetic flux or sunspot areas, we can also derive the
distribution function of total magnetic flux or toral area of sunspot regions, summed over the hemi-

sphere. This is a more fundamental quantity in considering solar irradiance modulation or luminosity
variations of stars by starspots.

By adopting a model of gamma distribution with α3 = 1.450 and β3 = 0.547, we have generated
Ns = 2995 samples of Φmd by Equation (13) and converted them to Smd by Equation (1). The

distribution was extended down to Smd = 10 MSH, because in the process of time evolution, regions

with S < 500 MSH were generated, and these regions also contributed to the total area of sunspots.
Then the models were distributed randomly over the time period of 0 ≤ t ≤ t0 = 146.7 years, and

were evolved according to Equation (7). If the time evolution of a region hit the end of the time
domain t = t0, the profile was folded and continued to t = 0, to make the statistical distribution

stationary in time. The filter of 13 consecutive 1’s and 14 consecutive 0’s was multiplied to S(t) as in
Section 6.3. The daily summed values of magnetic flux over the solar hemisphere, Φhs, were recorded,

and the histogram of PDF was generated (Figure 11a). In Figure 11, in addition to the abscssa in
terms of Φhs, the scale is also given for the sunspot areas summed over the hemisphere, Shs.

Figure 11a shows four histograms thus generated. The dotted histogram is the one that was made
by simply using all the generated data values. The result is rather counter-intuitive in that the distri-

bution is very flat at the lower end; actually it has a peak at 120 MSH. By looking at the histograms
derived from observations (Figure 11b), the histogram using all the data is monotonically decreasing,

and those derived from activity maximum, intermediate, and minimum states show different behav-
ior. In particular the histogram of the activity maximum period shows a peak at around 3 ×1022 Mx

(650 MSH), but the sum of the three histograms (red, green, and blue) gives the histogram in black

which is monotonically decreasing.
The red, green, and blue histograms in Figure 11a obtained from simulations mimic the activity

maximum, intermediate, and minimum states. If all combined, we obtain the histogram in a black
solid line which roughly reproduces the observed histogram in Figure 11b (black). Here it must be

stressed that the sum of the red, green, and blue histograms in Figure 11a does not lead to the black
dotted histogram (derived from using all the data) but to the black solid histogram. In the simulated

data the solar cycle modulation was not built in and had to be introduced manually. The black
dotted histogram (derived from using all simulated data) is similar in shape to the one derived from

the intermediate activity state, meaning that the entire simulated data without cycle modulation
represent an intermediate activity lasting the entire data period of 146.7 years.

The corresponding histograms (red, green, and blue) in Figures 11a and b do not match so well,
in various reasons. Our model for the time evolution of sunspot areas is a very idealized one. The

lifetime of a region was assumed to be a unique function of maximum-development area, but in reality
there should be a statistical distribution of region lifetimes for a given maximum-development area.

The division of data into three phases (activity maximum, intermediate, and minimum states) was

made by a very simple procedure. Nevertheless the maximum hemispheric summed area of sunspots
expected from simulations is about 7420 MSH, which is not very far from the observed maximum

value, 8382 MSH.
Figure 12 compares two cases of maximum activity phase; one is the same as in Figure 11 (except

for the normalization parameter T ; Appendix A.2) and the other adopts the parameter setting
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(a, b) = (0.3, 4.0), i.e. the value originally suggested by Kopecký (1956) to reproduce the empirical

relations tlife[days] ≃ 0.1Smd[MSH] by Gnevyshev (1938). The two histograms are not monotonic and
have peaks at Φhs = 3.4 ×1022 Mx (Shs = 680 MSH) for the former case and at Φhs = 1.8× 1023 Mx

(Shs = 3500 MSH) for the latter case. The maximum value of the hemispheric summed area for the
latter case is13770 MSH.

The summed area of sunspots can be converted to the modulation in total solar irradiance (TSI,
≃ 1361 W m−2; Kopp 2021) by

∆TSI

TSI
= c

Sh[MSH]

2× 106
(14)

with c ≃ 0.22–0.31 (Hudson et al. 1982). If we take the observed maximum value of Shs = 8382 MSH
(covering 1.67 % of the visible disk) and c = 0.25, we obtain ∆TSI/TSI = 1.05 %. If we assume a

hypothetical extreme case of Shs = 13770 MSH discussed above (covering 2.7 % of the visible disk),
we obtain ∆TSI/TSI = 1.7 %.

The reasons why we revisited the case of (a, b) = (0.3, 4.0) is, on the one hand, to show that this
parameter setting leads to overestimated summed total areas of sunspots. On the other hand it is

important to remember that the two simulations in Figure 12 are based on the same flux emergence
rates, or the same strength of dynamo action. Sunspots live longer for the setting of (a, b) = (0.3, 4.0)

than the case of (a, b) = (0.3, 20.0) by about a factor of 5, meaning that the former case represents a
situation of lower diffusion of sunspot magnetic flux, or possibly weaker surface turbulent convection.

Figure 12. The histograms of the probability distribution function h(Φhs) of magnetic flux summed over
the observed area, derived from a gamma distribution with α3 = 1.450 and β3 = 0.547 combined with
the sunspot area evolution models of Figure 8. The histogram with a solid line represents the case of
our standard setting, (a, b) = (0.3, 20.0). The dashed line shows a case of enhanced lifetimes of sunspots,
(a, b) = (0.3, 4.0), which corresponds to the area-lifetime relation suggested by Gnevyshev (1938) for smaller
(< 400 MSH) sunspots.
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7. SUMMARY AND DISCUSSION

We have investigated the probability distributions of sunspot areas Smd ≥ 500 MSH by using the
data from RGO (1987 April – 1976) and USAF/NOAA (1977–2020). Recurrent regions were only

counted once at their maximum area development. The data scale of NOAA was adjusted to the
scale of RGO by Equation (2), and the sunspot areas were converted to the magnetic flux contents

of active regions by Equation (1). We obtained a sample of 2995 regions covering 146.7 years.
The data were fitted by a power-law distribution and four two-parameter distributions (tapered

power-law, gamma, lognormal, and Weibull distributions). The parameter values were obtained by

the MLE method or by minimizing the revised Kolmogorov-Smirnov metric (KSr, Equation (B37)).
Superiority of one model over the other was assessed by the AIC values. The acceptance or rejection

of a specific model was assessed by the conventional Kolmogorov-Smirnov (KS) test, or by using KSr
and its P-values (probability of realization).

The power-law model was unfavorable compared to the four models in terms of AIC, and was not
acceptable by the classical KS test. Among the two-parameter models, the lognormal and Weibull

distributions performed well, but their behavior extended to smaller regions (S ≪ 500 MSH) did
not connect to the previously published results. Therefore, our choices were tapered power-law and

gamma distributions. The latter was more favorable considering its consistent sign of curvature of
the PDF (Appendix A.4, Figure 13). We also preferred the model determined by KSr=min than the

MLE solution; the former directly minimized the deviation of the model CCDF from the observed
CCDF, with more weight on the tail of the distribution.

The power-law portion of the tapered power-law and gamma distributions was found to be charac-
terized by its power exponent 1.35–1.9. This was smoothly connected to the power-law distribution of

exponent 2 for smaller active regions obtained by Harvey & Zwaan (1993). Modern observations on

ephemeral regions and smaller flux concentrations by Hagenaar et al. (2003) and Thornton & Parnell
(2011) implied an exponential decline or steeper power law. Although Thornton & Parnell (2011)

suggested that all the magnetic structures were fitted by a single power law with an exponent ≃ 2.7,
we argue that this is an extreme conclusion. Large sunspots and ordinary (or small) active regions

show the power-law behavior with exponent 1.35–2, and their amplitude changes by a factor of 10
between activity maximum and minimum. Small flux concentrations, whether they follow a steeper

power law or exponential decline, do not change significantly between activity maximum and min-
imum, and we suggest that they give way to the active region population at around Φmd ≃ 1020

Mx.
The exponential fall-off of our tapered power-law and gamma distributions were significant, and the

expected frequencies of large sunspots (Table 3) were low. The largest sunspot the Sun can generate
was estimated to be around 2× 104 MSH. Such an upper limit to exist seems reasonable because the

magnetic fields generating sunspots must be amplified within the convection zone, which has a finite
size of 2× 105 km (30 % of solar radius).

The effects of time evolution of sunspot areas were estimated by introducing a model by Kopecký

(1956). Our model assumed the lifetimes of sunspots roughly one fifth of the empirical relation
for lifetimes proposed by Gnevyshev (1938), in order for the flux emergence rates we derived to be

consistent with the instantaneous distribution of sunspot areas. Our assumption that the observed
maximum area of a region on the visible hemisphere was a reasonable approximation to the true

maximum area was confirmed.
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By using the same evolution model, we converted the distribution of maximum development areas

to the distribution of instantaneous areas, and further derived the Sun-as-a-star distribution functions
of total sunspot areas. In the current Sun, the largest total hemispheric areas of sunspots recorded

is 8382 MSH, i.e. covering 1.67 % of the visible disk. By artificially increasing the lifetimes of large
sunspots, the total area covered by sunspots can be increased, even up to 2.7 % of the solar disk,

leading to the modulation in TSI of about 1.7 %.
Recently, Maehara et al. (2017) compared the appearance rates of starspots on slowly rotating solar-

type stars and the rates of sunspots and found that the two distributions are not very dissimilar,
speculating that the sunspots and larger starspots share a common physical origin. However, in

the last 147 years, we observed no sunspots greater than 6132 MSH in area. If the sunspot area
distribution were to follow a power law and it were a matter of observation period, perhaps we can

find some events of a relevant size by extracting historical records from a period even before that of
the RGO data (Vaquero 2007). Our statistical analysis implies that the probability for the Sun to

produce much larger single active region is small; 10000 MSH region every 3–8 ×104 years. A similar

argument on the hemispheric summed areas of sunspots was not made in this paper because we do
not have a model for its distribution function, namely how the distribution decays at large values of

summed areas. This will be the task in a future paper.
Our hypothetical simulation runs assuming enhanced lifetime of sunspots (not enhanced generation

of large sunspots) showed that the total area of sunspots can reach 2.7 % of the visible disk. The
emergence rates of sunspots reflect the process for the solar dynamo to generate magnetic flux, but

the lifetime of magnetic structures is controlled by diffusion due to convective eddies. The latter
may be an independent process from the dynamo. In the case of the Sun, the diffusive decay of

sunspots leads to lifetimes of at most 7 months (Kopecký 1984). Under which conditions one may
have larger starspots (stronger dynamo) or starspots living for many years (reduced diffusion) could

be an important issue in understanding the nature of super-large starspots.
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APPENDIX

A. PROBABILITY DISTRIBUTION FUNCTIONS

A.1. Definitions

To be generic, we will use x instead of Φ for a statistical variable, and consider a semi-infinite range
xmin ≤ x. The observed values of x are indicated by xi (i = 1, 2, . . . , n). The probability distribution

function (PDF) and its complementary cumulative distribution function (CCDF) for flux emergence
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rates are denoted by P (x) and F (x), respectively, which are

P (x) = −dF

dx
, (A1)

F (x) =

∫ ∞

x

P (x′) dx′, (A2)

and

F (xmin) =

∫ ∞

xmin

P (x) dx = 1. (A3)

The observed CCDF (Fobs) is defined as an aggregate of step functions,

Fobs(x) = (number of data with xi ≥ x)/n. (A4)

At x = xi, Fobs(x) jumps from i/n to (i− 1)/n, and Fobs(xi) = i/n because of the “≥” condition in
Equation (A4).

A.2. Normalization

The emergence rate of regions with maximum-development magnetic flux Φmd is given by Equation
(3),

f(Φmd) = − Ns

AT

dF (Φmd)

dΦmd
(A5)

(Figures 3, 4, 5, 6, 7, and 9). Here T = 5.36× 104 days, A = 6.2× 106Mm2 is the full-Sun area.

For instantaneous distributions of magnetic flux Φ, we use G(Φ) for CCDF, and the probability
distribution g(Φ) is given by

g(Φ) = −Nrd

AT

dG(Φ)

dΦ
(A6)

(Figure 10). Here T = 5.36 × 104 days, A = 3.1 × 106Mm2 is the area of solar hemisphere. Nrd is
given in Table 4.

For the distributions of summed hemispheric magnetic flux Φhs, we use H(Φhs) for CCDF and the
probability distribution function h(Φhs) is given by

h(Φhs) = −Nd

T

dH(Φhs)

dΦhs
(A7)

(Figures 11 and 12). Here T is actually the total number of observations (one observation per day),
so that T = 5.36×104 observations in Figure 11 for all the cases (maximum, intermediate, minimum,

all, and combined). In figure 12, T = 1.3× 104 observations. Nd is given in Table 4.

A.3. Power-Law Distribution

F (x) =

(

x

xmin

)−α1+1

(α1 > 1), (A8)

P (x) =
1

(α1 − 1)xmin

(

x

xmin

)−α1

. (A9)

The maximum-likelihood estimator for the power exponent α1 is given by (e.g., Clauset et al. 2009)

α1 = 1 +

[

n
∑

i=1

ln

(

xi

xmin

)

]−1

. (A10)
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A.4. Tapered Power-Law Distribution

First we define CCDF as (Kagan 2002)

F (x) =

(

x

xmin

)−(α2−1)

exp

[

−β2
x− xmin

xmin

]

(α2 > 1, β2 ≥ 0), (A11)

(M,Mt,Mcm, and β in Kagan (2002) are M = x, Mt = xmin, Mt/Mcm = β2, and β = α2 in our

notation) which gives the PDF as follows;

P (x) =
1

xmin
exp

[

−β2
x− xmin

xmin

]

[

1

α2 − 1

(

x

xmin

)−α2

+ β2

(

x

xmin

)−(α2−1)
]

. (A12)

The MLE for parameters α2 and β2 are given by (Kagan & Schoenberg 2001; Vere-Jones et al. 2001)

β2 =

[

n− (α2 − 1)

n
∑

i=1

ln

(

xi

xmin

)

][

n
∑

i=1

xi − xmin

xmin

]−1

, (A13)

n
∑

i=1

[

α2 − 1 + β2
xi

xmin

]−1

=

n
∑

i=1

ln
xi

xmin
. (A14)

Equation (A14) must be solved numerically for α2.

Equation (A12) indicates that the PDF contains two power-law components with exponents α2 and
α2 − 1, the former being the dominant component for small x. We can show that

d2 lnP

d(ln x)2
= − β2x

xmin

[

1− α2 − 1

(α2 − 1 + β2x/xmin)2

]

. (A15)

The sign of this quantity is distributed as in Figure 13a. For α2 > 2, d2 lnP/d(ln x)2 is always
negative, and the slope of lnP as a function of lnx monotonically steepens as x increases. If 1 <

α2 < 2, d2 lnP/d(ln x)2 changes sign at β2x/xmin =
√
α2 − 1 − (α2 − 1), namely the slope of lnP

as a function of ln x first flattens and then steepens as x increases. This “reversed curvature” is

conspicuous if α2 is close to 1 (Figure 13b), and could be an undesirable feature of this distribution
function if the inflection point appears in the fitting range (xmin < x), or if we extend the distribution

down below xmin.

A.5. Truncated Gamma Distribution

We first define PDF as (Kagan 2002)

P (x) = C

(

x

xmin

)−α3

exp

[

−β3
x

xmin

]

(α3 > 1, β3 ≥ 0), (A16)

where C is fixed from the normalization condition as

C =
β1−α3

3

xminΓ(1− α3, β3)
(A17)
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Figure 13. (a) The locus of d2 lnP/d(lnx)2 = 0. In the area above this curve, the slope of lnP as a
function of lnx monotonically steepens as x increases. (b) An example of P (x) for α2 = 1.1 and β2 = 0.01.
The slope is not monotonic, and an inflection point appears.

and Γ stands for the incomplete gamma function defined by

Γ(a, y) =

∫ ∞

y

ta−1e−tdt. (A18)

If α3 < 0 (which is more common cases in application), P (x) can be defined down to x = 0. Here

we consider the case α3 > 1 so that x must be bounded from below as x ≥ xmin, hence the name
”truncated gamma distribution.” CCDF is given by

F (x) =
Γ(1− α3, β3x/xmin)

Γ(1− α3, β3)
. (A19)

In order for Γ-function not to diverge at β3 → 0 and α3 > 1, a recurrence formula

Γ(a+ 1, y) = aΓ(a, y) + yae−y (A20)

is used to rewrite F (x) as

F (x) =
Γ(3− α3, η)− η2−α3e−η3 − (2− α3)η

1−α3

3 e−η

Γ(3− α3, β3)− β2−α3

3 e−β3 − (2− α3)β
1−α3

3 e−β3

(η = β3x/xmin), (A21)

which can be safely used for 1 < α3 < 3.

To obtain the MLE solutions for α3 and β3, the log-likelihood LLH,

LLH = n lnC − α3

n
∑

i=1

ln
xi

xmin
− β3

n
∑

i=1

xi − xmin

xmin
(A22)

is usually maximized for both α3 and β3 numerically (Johnson et al. 2011). Here we use the condition
∂LLH/∂β3 = 0 explicitly, i.e.

ln Γ(1− α3, β3) = −α3 ln β3 − β3 − ln

[

α3 − 1

β3
+

1

n

n
∑

i=1

xi

xmin

]

(A23)
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which gives β3 if α3 is specified. Therefore, LLH is maximized for α3 to obtain the MLE solution.

A.6. Truncated Lognormal Distribution

We first define PDF as

P (x) =
C√
2πσx

exp

[

−{ln(x/xmin)− µ}2
2σ2

]

(A24)

where C is fixed from the normalization condition as

C = 2

[

1− erf

(

− µ√
2σ

)]−1

(A25)

and erf stands for the error function defined by

erf(y) =
2√
π

∫ y

0

e−t2dt. (A26)

The peak of P is at xmin exp(µ − σ2). The lognormal distributions can generally be defined down
to x = 0, and under such cases the mean and the dispersion are given by xmin exp(µ + σ2/2) and

x2
min exp(2µ + σ2)[exp(σ2) − 1]. In our case we truncate the distribution at x = xmin, so that the

mean and the dispersion are not given by these formula.
CCDF is given by

F (x) =

[

1− erf

(

ln(x/xmin)− µ√
2σ

)][

1− erf

( −µ√
2σ

)]−1

. (A27)

By introducing ζ = µ/σ, the MLE solution is given by (Crow & Shimizu 2020)

σ =
1

n

n
∑

i=1

ln
xi

xmin

[

ζ +

√

2

π

e−ζ2/2

1− erf(−ζ/
√
2)

]−1

(A28)

and

1−
√

2

π
ζ

e−ζ2/2

1− erf(−ζ/
√
2)

=
1

n

n
∑

i=1

[

1

σ
ln

(

xi

xmin

)

− ζ

]2

. (A29)

Equation (A29) must be solved numerically for ζ .

A.7. Truncated Weibull Distribution

CCDF and PDF are given by (Weibull 1939)

F (x) = exp

[

−β5

(

x

xmin

)k

+ β5

]

(k > 0, β5 > 0) (A30)

and

P (x) =
β5k

xmin

(

x

xmin

)k−1

exp

[

−β5

(

x

xmin

)k

+ β5

]

. (A31)
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If k ≥ 1, P (x) can be defined down to x = 0. Here we consider the case k < 1, so that the equations

above are here modified to include the truncation at x = xmin. The MLE solutions are given by
(Wingo 1989)

β5 =

[

1

n

n
∑

i=1

(

xi

xmin

)k

− 1

]−1

(A32)

and
n

k
+

n
∑

i=1

ln
xi

xmin

[

1− β5

(

xi

xmin

)k
]

= 0. (A33)

Equation (A33) must be solved numerically for k.

The behavior of P near x ≃ xmin is

P (x) ≃ β5k

xmin

[

1− x− xmin

xmin
(1− k + β5k)

]

, (A34)

so that the slope in the lnP vs. ln x plot at x = xmin is d lnP/d ln x = −(1 − k + β5k).

The behavior of P at x ≃ 0 is

P (x) ≃ β5k

xmin

(

x

xmin

)−(1−k)

exp(β5) (A35)

so that the distribution approaches a power law with exponent 1− k.

B. EVALUATION METRICS

The goodness-of-fit metrics measure the distance between the theoretical and observed CCDFs. In
this paper we use the Kolmogorov-Smirnov metric (KS) and its variant, KSr.

B.1. Kolmogorov-Smirnov Metric

The KS metric is defined as (Stephens 1970, 2016)

KS = max
1≤i≤n

(

n + 1− i

n
− F (xi), F (xi)−

n− i

n

)

. (B36)

For large-enough n, the probability of obtaining
√
n KS larger than a specified value is given by the

so-called Kolmogorov-Smirnov function with relatively weak dependence on n, regardless of the form

of CCDF. We used the method proposed by Simard & L’Ecuyer (2011) to calculate the Kolmogorov-
Smirnov function.

B.2. Modified Kolmogorov-Smirnov Metric

Since the observed and theoretical CCDFs match at x ≃ xmin and x → ∞ by definition, the data

points in these regions have less contributions to the KS metric compared to mid data points. As
a matter of fact, the contributions scale as

√

F (1− F ) (Anderson & Darling 1952). Therefore, one

can obtain more uniform contributions from all the data by dividing the difference by 1/
√

F (1− F )
(Anderson & Darling 1952; Clauset et al. 2009). In this paper we adopt

KSr = max
1≤i≤n

(

n+ 1− i

n
− F (xi), F (xi)−

n− i

n

)

/
√

F (xi), (B37)

to emphasize the tail portion only. A mismatching near x ≃ xmin may occur from physical (e.g.
limitation in detecting small sunspots, which is very unlikely in the present study because 500 MSH

sunspots are big) or technical reasons. Therefore, we do not want to amplify it.
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C. COMPARISON WITH PUBLISHED DATA

Here we will summarize the flux emergence rates [Equation (3)] given in the literature and how
they were converted and plotted in Figure 7 in units of Mx−1 Mm−2 d−1. The values of n, A, and T

differ in individual data sources.

C.1. Thornton & Parnell (2011)

Thornton & Parnell (2011) analyzed the emergence rates of small-scale magnetic field patches using

the data from Hinode/SOT and obtained a formula extending all the way up to the active-region

scales,

fThP =
n0

Φ0

(

Φ

Φ0

)−α

[Mx−1 cm−2 day−1] (C38)

where n0 = 3.14 × 10−14 cm−2 day−1, Φ0 = 1.0 × 1016 Mx, and α = −2.69. In Figure (7) is plotted
f̃ThP = fThP × 1016, the last factor is (Mm/cm)2.

Figure 5 of Thornton & Parnell (2011) were also copied to Figure 7 using geometrical approxima-
tions to their curves.

C.2. Harvey & Zwaan (1993), Schrijver & Harvey (1994)

Harvey & Zwaan (1993) derived the emergence rates of bipolar active regions using the data ob-
tained at NSO Kitt Peak (Livingston et al. 1976). The data were taken on 739 days nearly uniformly

distributed from 1975 to 1986. Table 6 reproduces the data give in their Table 1 before various
corrections (data gaps, etc.) were applied. We have converted the area data Aj and ∆Aj in square

degrees (sq. deg. = 1.48× 1018 cm2) to magnetic flux as

Φj [Mx]=150×Aj × 1.48× 1018, (C39)

∆Φj [Mx]=150×∆Aj × 1.48× 1018. (C40)

The conversion factor 150 Mx cm−2 (or mean field strength) was taken from Schrijver & Harvey
(1994), who suggested 136 and 153 derived from different methods. The histogram in Figure 7 shows

the counts Nj/(τobs∆ΦjSh) where τobs = 739 d and Sh = 3.04 × 106 [Mm2] is the area of solar
hemisphere.

Schrijver & Harvey (1994) reported that the area distribution Nj(Aj) is fitted by a power law with
exponent p = 2, namely

Ñj(Aj) = a∗A−p
j , (C41)

with amplitudes a∗ = 1.23 for activity minima and a∗ = 10 for activity maxima. This range of values

is shown in Figure 7 as two parallel lines, after the following conversion

Ñ(Φj) = a∗A−p
j /[150× (1.48× 1018)× Sh]. (C42)

C.3. Hagenaar et al. (2003)

Hagenaar et al. (2003) investigated the emergence rates of small-scale bipolar magnetic field patches

(ephemeral regions) using the data from SOHO/MDI. The data were taken between 1996 and 2001.



Magnetic Flux Distribution of Sunspots 33

Table 6. Data reproduced from Harvey & Zwaan (1993). Here j represents the bin number, Aj and ∆Aj

represent the area and bin with in square degrees, and Nj represents the number of regions of the j-th bin.

j 1 2 3 4 5 6 7 8 9 10 11

Aj 2.90 3.93 4.95 5.95 6.99 8.00 8.91 9.92 11.34 13.13 15.47

∆Aj 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0

Nj 313 155 77 65 44 32 30 24 56 26 27

j 12 13 14 15 16 17 18 19 20 21 22

Aj 17.29 19.32 22.63 26.15 30.10 35.89 44.07 51.66 60.70 68.50 73.30

∆Aj 2.0 2.0 4.0 4.0 4.0 8.0 8.0 8.0 8.0 8.0 8.0

Nj 30 17 23 17 9 23 3 5 1 0 1

In their Figure 11 they presented the flux emergence rates in number of regions per day per 1018 Mx
bin over the whole solar surface for the data of 1997 October and 2000 August as

fH=Scm(28.4× 10−20) exp(−Φ/(1018[Mx]× 5.5fc)) (1997 October), (C43)

fH=Scm(21.1× 10−20) exp(−Φ/(1018[Mx]× 5.2fc)) (2000 August). (C44)

Here 1× 1018 Mx < Φ . 6× 1018 Mx, Scm = 6.1× 1022 is the whole solar area in cm2, and fc = 1.6

is a conversion factor to put the MDI field strength to the scale of NSO Kitt Peak. In Figure 7 these
were converted to

f̃H = fH/(1.0× 1018[Mx]× SMm) (C45)

where SMm = 6.1× 106 is the whole solar area in Mm2.

C.4. Baumann & Solanki (2005)

Baumann & Solanki (2005) presented the lognormal distributions fitted to the RGO sunspot area
data. They adopted the form

ln

(

dN

dA

)

= −(lnA− ln〈A〉)2
2 lnσA

+ ln

(

dN

dA

)

max

(C46)

with the normalization
∫ ∞

Amin

dN

dA
dA = 1 (C47)

and parameter values Amin = 60 MSH, 〈A〉 = 62.2 MSH, and σA = 2.45 MSH. These are converted
to our standard form [Cf. Equation (A24)]

PB(A) =
C̃√
2πσ̃A

exp

[

−{ln(A/Amin)− µ̃}2
2σ̃2

]

(C48)

by taking µ̃ = ln〈A〉+ln σA, σ̃ =
√
ln σA. Then, by applying Equation (1), we obtain Equation (A24)

with µ = µ̃p, σ = σ̃p (p = 1.02).
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C.5. Gopalswamy (2018)

Gopalswamy (2018) made a general study of the applicability of Weibull distribution to various
indices of solar activity. He used the formula for CCDF, represented by y, as

log y = a

[

1− exp

(

−γ − log x

η

)]

. (C49)

When x is the sunspot area in MSH observed at RGO and NOAA (1874 May to 2016 December) and

y is the number of regions with area > x, Gopalswamy (2018) gave the parameter values a = 2.5,
γ = 3.3, and η = 0.8. This should match our representation for CCDF,

FG = n exp

[

β − β

(

x

xmin

)k
]

(x ≥ xmin). (C50)

Here we adopt the un-normalized CCDF with a factor n = 41433 representing the total number of
data. The parameters are related as follows.

k=[η ln 10]−1 , (C51)

β=a ln 10− lnn, (C52)

xmin=10γ
(

1− 1

a
lnn

)1/k

. (C53)

After converting sunspot area x to magnetic flux Φ by Equation (1), and using tobs = 5.21 × 104 d
(from 1874 May to 2014 December) and Sobs = 6.1 × 106 (the whole solar area in Mm2), a Weibull

PDF multiplied by n/(tobsSobs) is plotted in Figure 7. We assume that Gopalswamy (2018) did not
make particular considerations on recurrent regions, so that some mismatching is anticipated.
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